Math, asked by Tvinothkumar, 1 month ago

In the figure given below, find the values of x and y​

Answers

Answered by niyatigupta4
0

Answer:

where is the figure??????????????..?

Answered by vishal2004jayapak1jf
0

Step-by-step explanation:

CUBOID

\begin{gathered} \implies \: lsa = 2(l + b)h \\ \\ \: \implies \: tsa = 2(lb + bl + hl) \\ \\ \implies \: volume \: = l \times b \times h\end{gathered}

⟹lsa=2(l+b)h

⟹tsa=2(lb+bl+hl)

⟹volume=l×b×h

\Large\mathcal\blue{CUBE}CUBE

\begin{gathered} \implies \: lsa = {4a}^{2} \\ \\ \implies \: tsa = {6a}^{2} \\ \\ \implies \: volume = {a}^{3} \end{gathered}

⟹lsa=4a

2

⟹tsa=6a

2

⟹volume=a

3

\Large\mathcal\brown{CYLINDER}\brownCYLINDER

\begin{gathered} \implies \: csa = 2\pi \: r \: h \\ \\ \implies \: tsa = 2\pi \: r(r + h) \\ \\ \implies \: volume \: = \pi \: {r}^{2} h < /p > < p > \end{gathered}

⟹csa=2πrh

⟹tsa=2πr(r+h)

⟹volume=πr

2

h</p><p>

\Large\mathcal\orange{CONE}CONE

\begin{gathered} \implies \: tsa \: = \: \pi \: r \: (l + r) \\ \\ \implies \: csa \: = \pi \: r \: l\\ \\ \implies \: volume \: = \frac{1}{3} (\pi \: {r}^{2} h)\end{gathered}

⟹tsa=πr(l+r)

⟹csa=πrl

⟹volume=

3

1

(πr

2

h)

\Large\mathcal\red {SPHERE }SPHERE

\begin{gathered}\implies \: tsa \: = 4\pi \: {r}^{2} \\ \\ \implies \: csa \: = 4\pi \: {r}^{2} \\ \\ \implies \: volume \: = \frac{4}{3} \: {r}^{3} \end{gathered}

⟹tsa=4πr

2

⟹csa=4πr

2

⟹volume=

3

4

r

3

\Large\mathcal\pink{HEMISPHERE}HEMISPHERE

\begin{gathered}\implies \: tsa \: =3\pi \: {r}^{2} \\ \\ \implies \: csa \: = 2\pi \: {r}^{2} \\ \\ \implies \: volume \: = \frac{2}{3} \pi \: {r}^{3} \end{gathered}

⟹tsa=3πr

2

⟹csa=2πr

2

⟹volume=

3

2

πr

3

Similar questions