In the figure given below, find the values of x and y
Answers
Answer:
where is the figure??????????????..?
Step-by-step explanation:
CUBOID
\begin{gathered} \implies \: lsa = 2(l + b)h \\ \\ \: \implies \: tsa = 2(lb + bl + hl) \\ \\ \implies \: volume \: = l \times b \times h\end{gathered}
⟹lsa=2(l+b)h
⟹tsa=2(lb+bl+hl)
⟹volume=l×b×h
\Large\mathcal\blue{CUBE}CUBE
\begin{gathered} \implies \: lsa = {4a}^{2} \\ \\ \implies \: tsa = {6a}^{2} \\ \\ \implies \: volume = {a}^{3} \end{gathered}
⟹lsa=4a
2
⟹tsa=6a
2
⟹volume=a
3
\Large\mathcal\brown{CYLINDER}\brownCYLINDER
\begin{gathered} \implies \: csa = 2\pi \: r \: h \\ \\ \implies \: tsa = 2\pi \: r(r + h) \\ \\ \implies \: volume \: = \pi \: {r}^{2} h < /p > < p > \end{gathered}
⟹csa=2πrh
⟹tsa=2πr(r+h)
⟹volume=πr
2
h</p><p>
\Large\mathcal\orange{CONE}CONE
\begin{gathered} \implies \: tsa \: = \: \pi \: r \: (l + r) \\ \\ \implies \: csa \: = \pi \: r \: l\\ \\ \implies \: volume \: = \frac{1}{3} (\pi \: {r}^{2} h)\end{gathered}
⟹tsa=πr(l+r)
⟹csa=πrl
⟹volume=
3
1
(πr
2
h)
\Large\mathcal\red {SPHERE }SPHERE
\begin{gathered}\implies \: tsa \: = 4\pi \: {r}^{2} \\ \\ \implies \: csa \: = 4\pi \: {r}^{2} \\ \\ \implies \: volume \: = \frac{4}{3} \: {r}^{3} \end{gathered}
⟹tsa=4πr
2
⟹csa=4πr
2
⟹volume=
3
4
r
3
\Large\mathcal\pink{HEMISPHERE}HEMISPHERE
\begin{gathered}\implies \: tsa \: =3\pi \: {r}^{2} \\ \\ \implies \: csa \: = 2\pi \: {r}^{2} \\ \\ \implies \: volume \: = \frac{2}{3} \pi \: {r}^{3} \end{gathered}
⟹tsa=3πr
2
⟹csa=2πr
2
⟹volume=
3
2
πr
3