Math, asked by BrainlyProgrammer, 1 month ago

In the figure given in attachment, AB, EF and CD are parallel lines. Given that AB = 15 cm, EG = 5 cm, GC = 10 cm and DC = 18 cm. Calculate
(i) EF
(ii) AC

Topic- Similarity
__
Plagiarism/Spams - Strictly prohibited.​

Attachments:

Answers

Answered by rsagnik437
110

Answer :-

(i) EF = 9 cm

(ii) AC = 25 cm

Explanation :-

In the given figure, we have :-

→ AB || EF || CD

→ AB = 15 cm ; EG = 5 cm

→ GC = 10 cm ; DC = 18 cm

________________________________

Firstly let's consider ∆EFG and ∆CDG . [EF || DC]

⇒ ∠EGF = ∠CGD (Vertically opp. ∠s)

⇒ ∠EFG = ∠CGD (alternate ∠s)

EFG ~ CDG (by AA- criterion)

For these similar triangles we have :-

⇒ EF/EG = DC/GC

⇒ EF/5 = 18/10

⇒ EF = 1.8 × 5

EF = 9 cm

________________________________

Now let's consider ∆ABC and ∆EFC . [AB || EF]

⇒ ∠ACB = ∠ECF (common ∠s)

⇒ ∠ABC = ∠EFC (corresponding ∠s)

ABC ~ EFC (by AA- criterion)

Again for these similar triangles :-

⇒ AC/EC = AB/EF

⇒ AC/(EG + GC) = AB/EF

⇒ AC/(10 + 5) = 15/9

⇒ AC = (15 × 15)/9

⇒ AC = 225/9

AC = 25 cm

Answered by Anonymous
55

Answer:

 \sf\tt\large{\blue {\underline {\underline{⚘\;Question:}}}}

  • AB,EF,CD are the parallel lines. Given that,
  • AB=15cm.
  • EG=5cm
  • GC=10cm
  • DC=18cm.

Calculate :

  1. EF
  2. AC.

 \sf\tt\large{\purple {\underline {\underline{⚘\;Answer: }}}}

 \sf\tt\large{\green {\underline {\underline{⚘\;The \;value \;of \;EF=9cm:}}}}

 \sf\tt\large{\green {\underline {\underline{⚘\;The \;value \;of\;AC=25cm:}}}}

 \sf\tt\large{\red {\underline {\underline  {⚘\;Solution:}}}}

  • Refer the given attachment for better understanding.

Hope it helps u.

Thank you .

Attachments:
Similar questions