In the
figure if line L ll line m find the value of x
Answers
2y + 25 = 3y (alternate interior angles)
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equal
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow,
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)75 = (x + 15)
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)75 = (x + 15)(x + 15) = 75
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)75 = (x + 15)(x + 15) = 75x = 75 - 15
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)75 = (x + 15)(x + 15) = 75x = 75 - 15x = 60 degrees
2y + 25 = 3y (alternate interior angles) 25 = 3y - 2y25 = 1y1y = 25y = 25/1 = 25Therefore, y = 25Substituting y = 25 in (2y + 25)(2(25) + 25)50 + 25= 75Therefore, 2y + 25 = 75(2y + 25) & (x + 15) are equal and same because they are opposite angles.So, (2y + 25) & (x + 15) are equalNow, (2y + 25) = (x + 15)75 = (x + 15)(x + 15) = 75x = 75 - 15x = 60 degreesTherefore, x = 60 degrees
Please mark as Brainliest if my answer helped you ...
HOPE IT HELPED YOU !!!
Step-by-step explanation:
In the figure,
2y + 25 = 3y ( Alternate interior angles)
Hence, 3y = 3 × 25 = 75
2y + 25 = 2 × (25) +25
In the figure,
x + 15 = 2y + 25 ( Vertically opposite angles)
Value of x = 60
Value of y = 25
Hope it helps