Math, asked by poonambhardwaj2006, 6 months ago

In the figure, If PQ I to PS and PQ||SR. ZSQR = 28º and QRT = 65°. then find the
values of x and y.

Answers

Answered by sethrollins13
87

Correct Question :

If PQ is perpendicular to PS , PQ // SR , ∠SQR = 28° and ∠QRT = 65° , the find the values of x and y .

Given :

  • PQ is perpendicular to PS .
  • PQ // SR
  • ∠SQR = 28°
  • ∠QRT = 65°

To Find :

  • Values of x and y .

Solution :

\longmapsto\tt{\angle{PQR}=\angle{QRT}\:(Alternate\:Angles)}

\longmapsto\tt{x+28^{\circ}=65^{\circ}}

\longmapsto\tt{x=65^{\circ}-28^{\circ}}

\longmapsto\tt\bf{x=37^{\circ}}

In Δ PQS :

\longmapsto\tt{\angle{PQS}+\angle{PSQ}+\angle{QPS}=180^{\circ}\:(A.S.P)}

\longmapsto\tt{37^{\circ}+y+90^{\circ}=180^{\circ}}

\longmapsto\tt{y+127^{\circ}=180^{\circ}}

\longmapsto\tt{y=180^{\circ}-127^{\circ}}

\longmapsto\tt\bf{y=53^{\circ}}

Therefore :

\longmapsto\tt\bf{Value\:of\:x=37^{\circ}}

\longmapsto\tt\bf{Value\:of\:y=53^{\circ}}

Attachments:
Similar questions