In the figure, is the centre of the circle. If angle AOB - 140° and angle OAC -50°.
Find : () angle ACB (ii) angle OBC () angle OAB (iv) angle CBA
Answers
Answer:
draw a line between A and B then OAB becomes an isosceles triangle with OA=OB (radius of circle)
in triangle AOB
angle O + angle OAB + angle OBA= 180°
as the triangle is isosceles
angle OAB= angle OBA and angle O= 140°
140°+ 2( angle OAB)= 180°
(iii) Angle OAB = 20° and angle OBA= 20°
given angle A = 50°
angle A = angle OAB+ angle BAC
50° = 20°+ angle BAC
angle BAC= 30°
now draw a line from O to C forming an isosceles triangle OAC such that OA= OC
given angle OAC = 50°
that means angle OCA=50°
in triangle OAC sum of angles = 180°
50°+50°+angle AOC =180°
angle AOC= 80°
angle O = angle AOC+ angle BOC
140°= 80°+ angle BOC
angle BOC= 60°
In triangle BOC OC=OB( radius of circle) that means angle OCB = angle OBC
angle BOC+ angle OCB+ angle OBC= 180°
60°+ 2( angle OCB)= 180
angle OCB = 60° (ii) angle OBC= 60°
angle ACB = angle OCA + angle OCB
angle ACB= 50°+ 60° = 110°
(I)angle ACB= 110°
sum of angles in quadrilateral = 360°
angle O + angle A+ angle c + angle B= 360°
140°+50°+110°+angle B= 360°
angle B= 60°
angle B = angle OBA+ angle CBA
60°= 20°+ angle CBA
(iv) angle CBA= 40°