Math, asked by malugreeshma2005, 29 days ago

In the figure, O is the centre and AD is the diameter of the circle. B and C are two point
BAC
on it.
DOB - 50
whether
B
А A
50°
Using a
D
this wo
500
C С
ZAOB =
[ZAOB and BOD are linear pairs]
Write the relation between ZOAB and ZOBA
ZOBA=
ZOAB
[DOB is the outer angle at the corner of the triangle AOB]
Write the suitable name of triangle AOB
Like this, find the ZOAC.
Measure of ZBOC
DOB+
Saino Saltel
.+50°- 100​

Answers

Answered by s1051gourina22127
1

Answer:

As AD∥BC and DB is a transversal.

⇒ ∠ODB=∠DBC [ Alternate angles ]

∴ ∠ODB=32

o

In △OBD

OB=OD [ Radius of a circle ]

∴ △OBD is isosceles triangle.

⇒ ∠OBD=∠ODB= [ Base angles are equal in isosceles triangle ]

∴ ∠OBD=32

o

∠OBD+∠ODB+∠BOD=180

o

[ Sum of angles of triangle is 180

o

. ]

⇒ 32

o

+32

o

+∠BOD=180

o

⇒ 64

o

+∠BOD=180

o

⇒ ∠BOD=116

o

⇒ ∠BOD+∠AOB=180

o

[ Linear pair ]

⇒ 116

o

+∠AOB=180

o

∴ ∠AOB=64

o

In △AOB,AO=OB, hence its an isosceles triangle

⇒ ∠OAB=∠OBA

Now, ∠AOB+∠OAB+∠OBA=180

o

⇒ 64

o

+∠OAB+∠OAB=180

o

⇒ 2∠OAB=116

o

∴ ∠OAB=58

o

⇒ ∠OAB=∠BED [ Angles subtended by the same chord BD ]

∴ ∠BED=58

o

.

(i) ∠OBD=32

o

(ii) ∠AOB=64

o

(iii) ∠BED=58

o

.

Similar questions