Math, asked by garry20021, 1 year ago

In the figure , PAB is a secant and PT a tangent to the circle with centre O . if angle TAP =40°, PA = 9cm and AB=7cm.

Attachments:

Answers

Answered by vaibhavadithi
0

Answer:

50 degrees

Step-by-step explanation:

Answered by dheerajk1912
10

\mathbf{\angle TPA= 50^{\circ} \ and \ PT = 3\sqrt{7} (cm)}

Step-by-step explanation:

  • Given data

        PA = 9 cm

        AB = 7 cm

        \mathbf{\angle ATP= 40^{\circ} }         (please correct the question)

        Because angle made on any point on semicircle is 90° .

        So \mathbf{\angle BAT= 90^{\circ}=\angle TAP }

  • In \mathbf{\Delta PAT}\\

         \mathbf{\angle TAP+\angle ATP+\angle APT =180^{\circ}}

         \mathbf{90^{\circ}+40^{\circ} +\angle APT =180^{\circ}}

         So on solving above equation

          \mathbf{\angle APT =50^{\circ}}

  • By using Tangent secant theorem

         \mathbf{PT^{2}=PA\times AB}

         \mathbf{PT^{2}=9\times 7}

         \mathbf{PT^{2}=3^2\times 7}

         So

         \mathbf{PT=3\sqrt{7} \ (cm)}

         

 

Similar questions