Math, asked by Archer, 1 year ago

In the figure ,POQ is aline. Ray OR is perpendicular to line. OS is a ray lying b/w OP & OR. PROVE THAT <ROS = 1/2[<QOS - <POS]​

Attachments:

Answers

Answered by HEMANTHKUMAR007
2
HEY MATE, GRAB YOUR ANSWER
Attachments:

HEMANTHKUMAR007: MARK it BRANLIEST ANSWER
HEMANTHKUMAR007: Krishna follow me
HEMANTHKUMAR007: archer follow me
HEMANTHKUMAR007: MARK this answer as BRANLIEST
Archer: how to mark
HEMANTHKUMAR007: above my answer, it will be as MARK IT BRANLIEST. Click that
Archer: not marked
HEMANTHKUMAR007: see
HEMANTHKUMAR007: follow me
HEMANTHKUMAR007: otherwise
Answered by Anonymous
1

☺ Hello mate__ ❤

◾◾here is your answer...

Given:   OR is perpendicular to PQ

OR and OS are rays to PQ

To prove:    ∠ROS=1/2(∠QOS−∠POS)

Proof:  ∠ROQ+∠ROP=180°       (Linear pair)

⇒∠ROP=180°−∠ROQ=180°−90°=90°

R.H.S =1/2(∠QOS−∠POS)

=1/2(180°−∠POS−∠POS)                               (∠POS+∠QOS=180°)   (Linear pair)

=1/2(180°−2∠POS)          ...........eq  (1)

We have ∠POS=∠ROP−∠ROS=90°−∠ROS, putting this in eq(1), we get

R.H.S =1/2(180°−2(90°−∠ROS))

=1/2(180°−180°+2∠ROS)=1/2(2∠ROS)

=∠ROS

Therefore, L.H.S=R.H.S

Hence proved.

I hope, this will help you.

Thank you______❤

✿┅═══❁✿ Be Brainly✿❁═══┅✿

Similar questions