Math, asked by vishnubala73, 5 months ago

In the figure, ∠POR and ∠QOR form a linear pair. If 2x – y = 60°, find the values

of x and y.​

Attachments:

Answers

Answered by PharohX
5

GIVEN :-

  • 2x - y = 60°

SOLUTION :-

It is given that

2x - y = 60° .........(i)

Note

 \sf \: sum \: of \: all \: the \: angles \: of \: linear \: pair \: is \: 180

Then

 \sf \: x \:  +  \: y =  \: 180 \:  \:  \: ...(ii)

Adding Eq. (i) and (ii)

We get

 \boxed{ \begin{array}{c}  \tt 2x - y  = 60\tt  \\   \tt \: x \:  + y = 180\tt   \\ \dfrac{\qquad\qquad}{}  \\  \tt \:3x = 240    \\ \dfrac{\qquad\qquad}{}\end{array}}

 \implies \sf \: x  =  \frac{240}{3}  \\

 \sf \implies \: x = 80 \degree

Putting x= 80° in eq. (ii)

 \sf \: 80 \:  +  \: y = 180

 \sf \implies \: y = 100 \degree

Hence. x = 80° and. y= 100°

Similar questions