Math, asked by MohanPradeep143, 1 day ago

In the figure PQ\\BC,if PQ/BC=2/5, then AP/PB is
a)2/5
b)2/3
c)3/2
d)3/5​

Attachments:

Answers

Answered by sadafsiddqui
14

given,

PQ/BC=2/5\\AP/PB\\=?\\PQ=2\\BC=5\\AP=PQ=2\\BC=AB\\BC=5=AB\\BP=AB-AP\\=5-2\\=3\\BP=3\\AP/PB=2/3

Hence, the correct option is (b) 2/3 .

Answered by Swarup1998
12

Given data:

In the figure \mathsf{PQ||BC} and \mathsf{\dfrac{PQ}{BC}=\dfrac{2}{5}}

To find:

\mathsf{\dfrac{AP}{PB}}

Step-by-step explanation:

From the given figure, we can say that \mathsf{\Delta APQ} and \mathsf{\Delta ABC} are like triangles.

Then \mathsf{\dfrac{AP}{AB}=\dfrac{PQ}{BC}}

\mathsf{\Rightarrow \dfrac{AP}{AP+PB}=\dfrac{2}{5}}

  • Since \mathsf{\dfrac{PQ}{BC}=\dfrac{2}{5}} and \mathsf{AB=AP+PB}

\mathsf{\Rightarrow \dfrac{AP+PB}{AP}=\dfrac{5}{2}}

\mathsf{\Rightarrow 1+\dfrac{PB}{AP}=\dfrac{5}{2}}

\mathsf{\Rightarrow \dfrac{PB}{AP}=\dfrac{5}{2}-1}

\mathsf{\Rightarrow \dfrac{PB}{AP}=\dfrac{5-2}{2}=\dfrac{3}{2}}

\mathsf{\Rightarrow \dfrac{AP}{PB}=\dfrac{2}{3}}

Answer: Option b) \mathsf{\dfrac{AP}{PB}=\dfrac{2}{3}}

Read more on Brainly.in

An airplane is flying on a flight path, that will take it directly over a radar tracking station, the distance is decrea...

- https://brainly.in/question/47060789

Solve the problem in the given attachment.

- https://brainly.in/question/8817586

Similar questions