Math, asked by suru4912, 1 year ago

In the figure , seg BD perpendicular side AC , seg DE perpendicular side BC , then show that DE× BE = DC× BE.

Attachments:

Answers

Answered by Gauravbhatt98
16
Given: BD perpendicular to side AC ( BD⊥AC) and DE perpendicular to side BC ( DE⊥BC)

To prove: DExBD=DCxBE

Proof: In \triangle BED\text{ and }\triangle BDC△BED and △BDC

\angle BED=\angle BDC∠BED=∠BDC           (Each 90° )

\angle DBE=\angle DBC∠DBE=∠DBC           (Common in both triangle)

So, \triangle BED \sim \triangle BDC△BED∼△BDC    by AA similarity

If two triangles are similar then their corresponding sides are in proportional.

\dfrac{DE}{DC}=\dfrac{BE}{BD}DCDE​=BDBE​

Using cross multiply

DExBD=DCxBE

Hence Proved

PLZ MARK IT AS BRILLIAST

sameer786qw: thankz bhaiiiii
Gauravbhatt98: ur welcome bhai
sameer786qw: ☺hmm
Gauravbhatt98: how r u bhai??
Similar questions