In the figure, segment QR is a tangent to the
circle with centre P. PR = 12 cm and PQ = 6 cm.
Find the area of shaded region.
(V3 = 1.73, I = 3.14)
Answers
Answer: 12.139
Step-by-step explanation:
=> Area of shaded area=
Took a lot of typing in bro. Do appreciate my work :))
Answer:
PQ=6cm
PR=12cm=PT+TR
12=6+TR(becausePTandPQareradius)
=>TR=6cm..........(i)
PR
PQ
=
12
6
=
2
1
............(ii)
now,cosP=
PR
PQ
=
2
1
but,cos60=
2
1
=><P=60deg
=><R=30deg(byanglesumproperty)
Now,sin<P=
PR
QR
=
2
3
=>QR=
2
3
×12=6
3
.....(iii)
Now,\;shaded\;area=ar(\triangle PQR)- ar(sector\;PQT)Now,shadedarea=ar(△PQR)−ar(sectorPQT) \begin{gathered}area\;of\;\triangle PQR= \frac{1}{2}\times b\times h.....(iv)\\b\times h=PQ\times QR=6\times 6\sqrt3 =36\sqrt3............(v)\\\\Using\;(v)\;in\;(iv)\\area\;of\;\triangle PQR= \frac{1}{2}\times b\times h=\frac{1}{2}\times36\sqrt3\\=18\sqrt3=31.176................(vi)\end{gathered}
areaof△PQR=
2
1
×b×h.....(iv)
b×h=PQ×QR=6×6
3
=36
3
............(v)
Using(v)in(iv)
areaof△PQR=
2
1
×b×h=
2
1
×36
3
=18
3
=31.176................(vi)
\begin{gathered}ar(sector\;PQT)=\frac{\theta}{360}\pi r^{2}\\=\frac{60}{360}\ \times \frac{22}{7}\times 6^{2}=\frac{132}{7}=18.857cm^{2}\end{gathered}
ar(sectorPQT)=
360
θ
πr
2
=
360
60
×
7
22
×6
2
=
7
132
=18.857cm
2
=> Area of shaded area= 31.176-18.857= 12.139 cm^{2}31.176−18.857=12.139cm
2
Took a lot of typing in LATEXLATEX bro. Do appreciate my work :))
Learning\;\;together\;:)Learningtogether:)