Math, asked by rudmuladas, 1 month ago

In the figure shown above DE is parallel BC. If the area of triangle ADE is half that of trapezoid DECB what is the ratio of AE to AC?

Answers

Answered by MysticSohamS
16

Answer:

hey here is your answer

pls mark it as brainliest

refer the reference diagram uploaded above for better understanding

Step-by-step explanation:

so \: here \: quadrilateral \: decb \: is \: a \: trapezoid \: ie \: is \: a \: trapezium \\ so \: then \: de \: parallel \: to \: bc

moreover \: here \\ area \: of \: triangle \: ade = 1/2×area \: of \: trapezoid \: decb \\ ie \: area \: of \: trapezoid \: decb = 2.area \: of \: traiangle \: ade

thus \: then \: by \: area \: addition \: property \:  \\ we \: get \\ area \: of \: triangle \: abc = area \: of \: triangle \: ade + area \: of \: trapzoid \: decb

now \: so \: we \: get \ \\ area \: of \: triangle \: abc = area \: of \: triangle \: ade + 2.area \: of \:triangle \: ade \\ ie \: area \: of \: triangle \: abc = 3.area \: of \: triangle \: ade \\  \\ so \: henceforth \: w \: get \\ area \: of \: triangle \: ade \div area \: of \: triangle \: abc = 1 \div 3  \:  \:  \:  \:  \:  \: (1)

now \: considering \: triangle \: ade \: and \: triangle \: abc \\ angle \: bac = angle \: bac \:  \: : (common \: angle) \\ since \: de \: parallel \: to \: bc \\ angle \: ade = angle \: abc \:  \:  \:  \:  \:  \:  \: (corresponding \: angles) \\  \\ hence \: triangle \: ade \: similar \: to \: triangle \: abc \:  \:  \:  \:  \: (a.a \: test \: of \: similarity)

so \: as \: triangle \: ade \: similar \: to \: triangle \: abc \\ by \: theorem \: on \: ratios \: of \: areas \: of \: similar \: triangles \\ we \: get \\ area \: of \: triangle \: ade \div area \: of \: triangle \: abc = ae \: square \div ac \: square \\  \\ so \: from \: (1) \: we \: get \\ ae \: square \div ac \: square = 1 \div 3 \\ taking \: square \: roots \: on \: both \: sides \\ we \: get \\ ae \div ac = 1 \div  \sqrt{3}

Attachments:
Similar questions