In the figure, the circle with centre A and
radius 18 touches the circle with centre C and radius 5 at point M radius AN of the large circle touchez the smaller circle in the T find AT
Answers
Solution :-
given that,
→ AM (Radius of bigger circle) = 18 unit .
→ CM = CT = 5 unit (Radius of smaller circle.)
So, In ∆ACT we have,
→ AM - CM = 18 - 5
→ AC = 13 units .
Now, in the given figure, seg AN is tangent to the circle with centre C at point T .
So,
→ ∠CTA = 90°
therefore, in right ∆CTA we have,
→ AT = √[AC² - CT²) { By pythagoras theorem. }
→ AT = √(13² - 5²)
→ AT = √(169 - 25)
→ AT = √(144)
→ AT = 12 units . { Taking positive value only. }
Hence, value of AT is equal to 12 units .
Learn more :-
*एक वृत्त पर एक बिंदु Q से खींची गयी स्पर्श रेखा की लंबाई 24 सेमी है तथा Q की केंद्र से दूरी 25 सेमी है। वृत्त की त्रिज्...
https://brainly.in/question/25249085
यदि एक छात्र एक वृत्त को चार बराबर भागों में विभाजित करता है तो वह होगा
https://brainly.in/question/26021103
here is it your answer check it