In the figure, triangle ABC is an obtuse triangle in which angle C > 90°. AD perpendicular to BC produced and BE perpendicular to AC produced. Prove that AB² = BC × BD + AC × AE
Answers
Figure is in the attachment...
Given that triangle ABC is an obtuse triangle in which angle C > 90°. AD perpendicular to BC produced and BE perpendicular to AC produced.
We have to prove ; AB² = BC × BD + AC × AE
Proof
In ∆ACD ; using Pythagoras theorem :
→ AC² = AD² + CD²
→ AD² = AC² - CD²........ (1)
In ∆ABD ; using Pythagoras theorem :
→ AB² = AD² + BD²
→ AD² = AB² - BD² ........(2)
From (1) and (2) :
→ AC² - CD² = AB² - BD²
→ AB² = AC² - CD² + BD² ........ (3)
Now in ∆BCE ; using Pythagoras theorem :
→ BC² = BE² + CE²
→ BE² = BC² - CE² ......... (4)
In ∆BAE ; using Pythagoras theorem :
→ AB² = BE² + AE²
→ BE² = AB² - AE² ........ (5)
Now from (4) and (5) :
→ BC² - CE² = AB² - AE²
→ AB² = BC² - CE² + AE² ....... (6)
Now adding (3) and (6) :
→ AB² + AB² = AC² - CD² + BD² + BC² - CE² + AE²
→ 2AB² = AC² - (BD - BC)² + BD² + BC² - (AE - AC)² + AE²
→ 2AB² = AC² - (BD² - 2.BD.BC + BC²) + BD² + BC² - (AE² - 2.AE.AC + AC²) + AE²
→ 2AB² = AC² - BD² + 2.BD.BC - BC² + BD² + BC² - AE² + 2.AE.AC - AC² + AE²
→ 2AB² = 2.BD.BC + 2.AE.AC
→ 2AB² = 2(BD.BC + AE.AC)
→ AB² = 2(BD × BC + AE × AC)/2