In the figure vAB parallel to CD parallel to EF then x+y is
Answers
Step-by-step explanation:
CD ।। EF ( Given )
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles)
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25°
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25° x = 155°
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25° x = 155°Again AB ।। CD ( Given )
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25° x = 155°Again AB ।। CD ( Given ) So, 75° = y + 25° ( Alternate interior angles )
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25° x = 155°Again AB ।। CD ( Given ) So, 75° = y + 25° ( Alternate interior angles ) y = 75° - 25°
CD ।। EF ( Given )Therefore, x + 25° = 180° ( co-interior angles) x = 180° - 25° x = 155°Again AB ।। CD ( Given ) So, 75° = y + 25° ( Alternate interior angles ) y = 75° - 25° y = 50°
Hence, x + y = 155° + 50°
= 205°