in the finger o is the Central of the circle m angle aob = 75° then find
(1)m(arc A X B)
(2)m(ARC A Y B)
Attachments:
Answers
Answered by
10
Answer:
Step-by-step explanation:
Therefore.,
•••♪
Answered by
1
Answer:
Answer:
\red{ m( \arc {AYB} )}\green {= 37.5\degree }m(\arcAYB)=37.5°
\red{ m( \arc {AXB} )}\green {= 142.50\degree }m(\arcAXB)=142.50°
Step-by-step explanation:
Given \: \angle {AOB} = 75\degreeGiven∠AOB=75°
ii) m( arc\: AYB ) = \frac{\angle{AOB}}{2}ii)m(arcAYB)=
2
∠AOB
\begin{gathered}= \frac{75}{2} \\= 37.5\degree \end{gathered}
=
2
75
=37.5°
\begin{gathered} i) m( \arc AXB ) = 180\degree - 37.5\degree \\= 142.50\degree \end{gathered}
i)m(\arcAXB)=180°−37.5°
=142.50°
Therefore.,
\red{ m( \arc {AYB} )}\green {= 37.5\degree }m(\arcAYB)=37.5°
\red{ m( \arc {AXB} )}\green {= 142.50\degree }m(\arcAXB)=142.50°
•••♪
Similar questions
Math,
5 months ago
Math,
5 months ago
Social Sciences,
11 months ago
India Languages,
11 months ago
Physics,
1 year ago
Physics,
1 year ago
English,
1 year ago