Math, asked by chandrakantshinde078, 11 months ago

in the finger o is the Central of the circle m angle aob = 75° then find
(1)m(arc A X B)
(2)m(ARC A Y B)​

Attachments:

Answers

Answered by mysticd
10

Answer:

 \red{ m( \arc {AYB} )}\green {= 37.5\degree }

 \red{ m( \arc {AXB} )}\green {= 142.50\degree }

Step-by-step explanation:

 Given \: \angle {AOB} = 75\degree

 ii) m( arc\: AYB )  = \frac{\angle{AOB}}{2}

= \frac{75}{2} \\= 37.5\degree

 i) m( \arc AXB ) = 180\degree - 37.5\degree \\= 142.50\degree

Therefore.,

 \red{ m( \arc {AYB} )}\green {= 37.5\degree }

 \red{ m( \arc {AXB} )}\green {= 142.50\degree }

•••♪

Answered by harshalis1126
1

Answer:

Answer:

\red{ m( \arc {AYB} )}\green {= 37.5\degree }m(\arcAYB)=37.5°

\red{ m( \arc {AXB} )}\green {= 142.50\degree }m(\arcAXB)=142.50°

Step-by-step explanation:

Given \: \angle {AOB} = 75\degreeGiven∠AOB=75°

ii) m( arc\: AYB ) = \frac{\angle{AOB}}{2}ii)m(arcAYB)=

2

∠AOB

\begin{gathered}= \frac{75}{2} \\= 37.5\degree \end{gathered}

=

2

75

=37.5°

\begin{gathered} i) m( \arc AXB ) = 180\degree - 37.5\degree \\= 142.50\degree \end{gathered}

i)m(\arcAXB)=180°−37.5°

=142.50°

Therefore.,

\red{ m( \arc {AYB} )}\green {= 37.5\degree }m(\arcAYB)=37.5°

\red{ m( \arc {AXB} )}\green {= 142.50\degree }m(\arcAXB)=142.50°

•••♪

Similar questions