In the fiurgurein the figure ab is equal to 12 cm and area is equal to 4 cm and BD is equal to customer what is the ratio between the area of triangle ABC and triangle bdc
Answers
Answer:
(1). \frac{ar(ABD)}{ar(ADC)}=\frac{7}{13}
(2). \frac{ar(ABD)}{ar(ABC)}=\frac{7}{20}
(3). \frac{ar(ADC)}{ar(ABC)}=\frac{13}{20}
Step-by-step explanation:
From the given figure,
BDC is a straight line.
BD = 7 and BC = 20
So,
DC = BC - BD = 20 - 7 = 13
DC = 13
So,
Area of triangle ABD is,
Area(ABD)=\frac{1}{2}\times BD \times h
and,
Area of triangle ADC is,
Area(ADC)=\frac{1}{2}\times DC \times h
where, h is the height of the triangle which is same for all the triangles.
So,
\frac{ar(ABD)}{ar(ADC)}=\frac{\frac{1}{2}\times BD\times h}{\frac{1}{2}\times DC\times h}=\frac{7\times h}{13 \times h}\\\frac{ar(ABD)}{ar(ADC)}=\frac{7}{13}
Therefore, the ratio of area of triangles ABD and ADC is given by,
\frac{ar(ABD)}{ar(ADC)}=\frac{7}{13}
(2).
Area of triangle ABD is,
Area(ABD)=\frac{1}{2}\times BD \times h
and,
Area of triangle ABC is,
Area(ABC)=\frac{1}{2}\times BC \times h
So,
\frac{ar(ABD)}{ar(ABC)}=\frac{\frac{1}{2}\times BD\times h}{\frac{1}{2}\times BC\times h}=\frac{7\times h}{20 \times h}\\\frac{ar(ABD)}{ar(ABC)}=\frac{7}{20}
Therefore, the ratio of area of triangles ABD and ABC is given by,
\frac{ar(ABD)}{ar(ABC)}=\frac{7}{20}
(3).
Area of triangle ADC is,
Area(ADC)=\frac{1}{2}\times DC \times h
and,
Area of triangle ABC is,
Area(ABC)=\frac{1}{2}\times BC \times h
So,
\frac{ar(ADC)}{ar(ABC)}=\frac{\frac{1}{2}\times DC\times h}{\frac{1}{2}\times BC\times h}=\frac{13\times h}{20 \times h}\\\frac{ar(ADC)}{ar(ABC)}=\frac{13}{20}
Therefore, the ratio of area of triangles ADC and ABC is given by,
\frac{ar(ADC)}{ar(ABC)}=\frac{13}{20}