Math, asked by BrainlyHelper, 1 year ago

In the following, determine whether the given quadratic equations have real roots and if so, find the roots:
(i)16x² = 24x + 1
(ii) x² + x + 2 = 0
(iii)√3x²+10x-8√3=0

Answers

Answered by nikitasingh79
39

SOLUTION :  

(i)  Given : 16x² =  24x + 1

16x² – 24x – 1 = 0

On comparing the given equation with,  ax² +  bx + c = 0

Here, a = 16 , b = - 24 , c = - 1

Discriminant , D = b² -  4ac

D = (-24)² - 4(16)(-1)

D = 576 + 64

D = 640

Since, D ≥ , 0 so given Quadratic equation has distinct real roots which are given by

x = [- b ± √D]/2a

x= −(−24) ±√640/ 2(16)

x =[ 24 ± 8√10] /32

x = 8 [3 ± √10]/32

x= (3 ± √10) /√4

x = (3 + √10) /√4  or x = (3 - √10) /√4

Hence, the Roots are (3 + √10) /√4  and x = (3 - √10) /√4.

(ii)Given : x² + x + 2 = 0

On comparing the given equation with,  ax² +  bx + c = 0

Here, a = 1 , b = 1 , c = 2

Discriminant , D = b² -  4ac

D = (1)² - 4(1)(2)

D = 1 - 8

D = - 7

Since, D <  0 so given Quadratic equation has no real roots .

(iii) Given : √3x² + 10x - 8√3 = 0

On comparing the given equation with,  ax² +  bx + c = 0

Here, a = √3 , b = 10 , c = - 8√3

Discriminant , D = b² -  4ac

D = (10)² - 4(√3)(- 8√3)

D = 100 + 32 × 3

D = 100 + 96

D = 196

Since, D ≥ , 0 so given Quadratic equation has distinct real roots which are given by

x = [- b ± √D]/2a

x= −10 ±√196/ 2(√3)

x =( - 10 ± 14)/2√3

x = 2( - 5 ± 7)/2√3

x = ( - 5 ± 7)/√3

x = (-5 + 7)/√3  or x = (- 5 - 7)/√3

x = 2/√3  or x = - 12/√3  

x = - 12/√3 = (- 4 ×3)√3/√3×√3 =  (- 4 ×3)√3 /3

[By rationalising the denominator]

x = - 4√3

x = 2/√3  or x = - 4√3

Hence, the Roots are  2/√3  and - 4√3 .

HOPE THIS ANSWER WILL HELP YOU...

Answered by mysticd
12

Solution :

_______________________

Nature of roots of a

quadratic equation

ax²+bx+c=0, a≠0 is

Discreminant (D)

= b²-4ac

If i ) D > 0

Roots are real and distinct.

ii ) D = 0

Roots are real and equal.

iii ) D < 0

Roots are not real.

_____________________

(i)16x² = 24x + 1

=> 16x² - 24x - 1 = 0

Compare this with

ax²+bx+c =0 , we get

a = 16 , b = -24 , c = -1

D = b² - 4ac

= (-24)² - 4×16×(-1)

= 576 + 64

= 640

D > 0

Therefore ,

Roots are real and distinct.

(ii) x² + x + 2 = 0

a = 1 , b = 1 , c = 2

D = (1)² - 4×1×2

= 1 - 8

D = -7

D < 0

Therefore ,

Roots are not real.

(iii)√3x²+10x-8√3=0

a = √3 , b = 10, c = -8√3

D = (10)² - 4×(√3)×(-8√3)

= 100 + 96

= 196

D > 0

Therefore ,

Roots are real and distinct.

•••••

Similar questions