In the following figure, AB is a chord of a circle with O as the centre and BOC as the diameter. If OD is perpendicular to AB such that OD = 6 cm, then AC = ?
Attachments:
Answers
Answered by
43
Answer:
AC=2OD
AC=2(6)
AC= 12cm
Step-by-step explanation:
Hope it will help u
Answered by
13
Given:
- OD = 6 cm
- OD ⊥ AB
To Find:
- The length of AC.
Solution:
1. From the given figure we get to know that D is the mid-point of the line AB and O is the mid-point of the line BC.
2. ∴ In ΔBAC,
⇒ OD = AC
3. Mid-point theorem: The line segment joining the mid-point of two sides of a triangle is parallel to its third side and equal to half of the length of its third side.
⇒ AC = 2OD = (2*6)cm ( rearranging the equation)
⇒ AC = 12 cm
∴ The length of AC is 12 cm.
Similar questions
Social Sciences,
6 months ago
Social Sciences,
11 months ago
Math,
11 months ago
Math,
1 year ago
English,
1 year ago