in the following figure ab is parallel to CD find the measure of BOC
Answers
Step-by-step explanation:
In fig. AF is a straight line
Therefore,
ABO + FBO = 180 (linear pair)
165 + FBO = 180
FBO (EBO) = 180 - 165 = 15
Now, AF is parallel to CD
Therefore, DCE = CEB (alternate angles)
CEB = 75
Now, CO is a straight line
Therefore,
CEB + OEB = 180 (linear pair)
75 + OEB = 180
OEB = 180 - 75 = 105
Now, in triangle EBO
EBO + BOE + OEB = 180
(angle sum property of triangle)
15 + BOE + 105 = 180
BOE = 180 - 105 + 15
BOE = 180 - 120
BOE = 60
Therefore, BOC = 60
Answer:
60°
Step-by-step explanation:
Given,
CD ║ AB
⇒ CD ║ AF ( shown in the given diagram ),
Let ∠x and ∠DCE are linear pairs,
⇒ ∠x + m∠DCE= 180°,
⇒ ∠x + 75° = 180° ( by the diagram ),
⇒ ∠x = 180° - 75° = 105°,
By the alternate interior angle theorem,
∠x ≅ ∠1,
⇒ m∠x = m∠1
⇒ m∠1 = 105°,
Now, by the vertically opposite angle theorem,
∠1 ≅ ∠BEO,
⇒ m∠BEO = 105°,
Now, m∠EBO = 15°,
∵ BEO is a triangle,
⇒ m∠EBO + m∠BEO + m∠BOE = 180°,
⇒ 15° + 105° + m∠BOE = 180°,
⇒ 120° + m∠BOE = 180°,
⇒ m∠BOE = 60°,
⇒ m∠BOC = 60°,