Math, asked by kansaravishakha5, 1 month ago

In the following figure, ABCD is a rectangle and DEC
is an equilateral triangle. Find the area of the shaded
region.
Pls solve it fast..

Attachments:

Answers

Answered by sethrollins13
165

Given :

  • ABCD is a Rectangle and DEC is an equilateral triangle .

To Find :

  • Area of Shaded Region .

Solution :

Firstly we'll find the Area of Rectangle :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{6\times{8}}

\longmapsto\tt{48\:{cm}^{2}}

Now , We'll calculate the Area of Equilateral Triangle :

\longmapsto\tt\bf{Each\:Side=6\:cm}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Equilateral\:Triangle=\dfrac{\sqrt{3}}{4}\times{a}^{2}}

Putting Values :

\longmapsto\tt{\dfrac{\sqrt{3}}{4}\times{(6)}^{2}}

\longmapsto\tt{\dfrac{\sqrt{3}}{{\cancel{4}}}\times{{\cancel{36}}}}

\longmapsto\tt{\sqrt{3}\times{9}}

\longmapsto\tt\bf{15.6\:{cm}^{2}\:(Approx.)}

Now ,

Area of Shaded Region :

\longmapsto\tt{48-15.6}

\longmapsto\tt\bf{32.4\:{cm}^{2}}


Anonymous: Great! :)
sethrollins13: Thank you! ♡
BrainlyPopularman: Nice work ❤
amansharma264: great
Answered by MяMαgıcıαη
124
  • Area of shaded region = (48 - 93) cm²

━━━━━━━━━━━━━━━━━━━━━━━━━━

Explanation :

G I V E N :

  • An equilateral triangle DEC with side = 6 cm
  • A rectangle ABCD with dimensions (L × B) = 8 cm × 6 m.

T OF I N D :

  • Area of shaded region = ?

S O L U T I O N :\:

Finding area of rectangle ABCD :

Area (rectangle ABCD) = L × B

Area (rectangle ABCD) = 8 × 6

Area (rectangle ABCD) = 48 cm² ()

Finding area of triangle DEC :

Area (triangle DEC) = √3/4(side)²

Area (triangle DEC) = √3/4(6)²

Area (triangle DEC) = √3/4 × 6 × 6

Area (triangle DEC) = √3/2 × 3 × 6

Area (triangle DEC) = √3 × 3 × 3

Area (triangle DEC) = √3 × 9

Area (triangle DEC) = 9√3 cm² (ℹℹ)

Finding area of shaded region :

Area (shaded region) = (ℹ) - (ℹℹ)

Area (shaded region) = (48 - 93) cm²

Hence, area of shaded region = (48 - 93) cm²

━━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Nice
Similar questions