Math, asked by Sarojchoudhary277200, 3 months ago

In the following figure, DE BC, triangle B = 30°, triangle A = 60°. Find the
values of x, y and z.​

Attachments:

Answers

Answered by farhankhan66431
4

Answer:

y=30° (corresponding angle)

60+y+x=180°

60+30+x=180°

x=180-90

x=90°

z=90° (corresponding angle)

Answered by Anonymous
33

Given: In the following figure, DE BC, triangle B = 30°, triangle A = 60°.

To Find: The value of x y and z

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

We know that,

 \:  \:  \:  \:  \:  \:   \bigg[ \tt \: sum \: of \: interior \: angles \: in \: a \:  \triangle = 180 \degree \bigg]

 \\

Here,

  \leadsto \tt \: (in \:  \triangle \: abc) \: 30 + 60 +  \angle \: z = { \boxed{180}} \\  \\  \\  \leadsto \tt 90 + \angle \: z = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \\  \leadsto \tt \angle \: z = 180 - 90\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt \angle \: z = { \pink{ \boxed{90 \degree}}}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Now,

 \\

 \leadsto  \tt \angle \: y \:  = 30 \degree( \angle \: y \: corresponds \angle \: d) \\  \\  \\  \leadsto \tt \angle \: x = 90 \degree(\angle \: x \: corresponds \angle \: z)

 \\

Check,

 \leadsto \tt in \:  \triangle \: ade \: 30 + 90 + 60 = 180 \\  \\  \\  \leadsto \tt 90 + 90 = 180\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt 180 = 180\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Similarly

 \leadsto \tt in \:  \triangle \: abc \: 30 + 90 + 60 = 180 \\  \\  \\  \leadsto \tt 90 + 90 = 180\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \leadsto \tt 180 = 180\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence proved!

Therefore,

 \\

 \:  \:  \:  \: { \underline{ \bold{ The \: angles \: are \: 30 \degree, 90 \degree ,90 \degree \: respectivly}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Similar questions