Math, asked by ashish2157, 2 months ago

in the following figure find the value of X and Y​

Attachments:

Answers

Answered by 12thpáìn
355

Let Inner ∆ be PRQ,

And Outer ∆ be PST

Given that

\\\\\begin{gathered}\frak{Given}\begin{cases}\sf  PQ=PR  \\\sf   PT=2x+4 \\ \sf  PS=3y+8 \\ \sf   ∠PQT=∠PRS \\ \sf  ∠QTP=∠SPR\end{cases}\end{gathered}\\

To Find

  • Value of x and y

Solution

  • PR=PQ

Now ,

\\\\ \sf{→∠PQR=∠PRQ \:  \:  \:  \:  \:  -  -  -  -given }

→ \text{Adding both sides 180° }

 \sf{→∠PQR + 180=∠PRQ  + 180}

 \sf{→∠PQT=∠PRS}\\\\\\

Now In ∆PQT and ∆PRS We have

\\\\ \sf{→∠QPT=∠RPS}

 \sf{→PQ=PR}

 \sf{→∠PQT=∠PRS}\\\\

\\\text{So by AAS Criterion of congruence we have,}\\\\

 \\\sf→∆PQT ≅ ∆PRS

 \\\\\sf{\therefore PT=PS \:   \:  \:  \:  \:  \:  \:  \:  \:  \: (by \:  CPCT  )_{(\:  Congruence \:  part \:  of  \: Congruence  \: Triangle)}}\\\\

So x=2y _(1)

 \\  \\  \sf{\therefore PT=PS \:   \:  \:  \:  \:  \:  \:  \:  \:  \: (by \:CPCT  )_{(\:Congruence \:  part \:  of  \: Congruence \: Triangle)}} \\ \\ \\

→2x + 4 = 3y + 8\\

\\\text{Putting the Value of x=2y from Equation 1.}\\

 \\\sf{→2×(2y) + 4 = 3y + 8 }

 →\sf4y + 4 = 3y + 8

→\sf4y  - 3y = 8  - 4

→\sf y = 4

→\sf{x= 2y=8}\\

  • Therefore x = 8 and y= 4
Attachments:
Similar questions