In the following figure, OE = 20 cm. In sector OSFT, square OEFG is inscribed. Find the area of the shaded region.
Answers
Answer:
The area of shaded region is 228 cm².
Step-by-step explanation:
GIVEN :
OEFG is a square , OE = 20 cm
In the figure join OF
OF is the diagonal of a square.
Diagonal of a square = √2 × side
= √2 × 20
Diagonal of a square = 20√2 cm
Radius of circle,r = Diagonal of a square = 20√2 cm
Radius of circle,r = 20√2 cm
Area of quadrant, OTFB = ¼ × πr²
= ¼ × 3.14 × (20√2)²
= ¼ × 3.14 × 400 × 2
= (100 × 6.28
= 628 cm²
Area of quadrant, OTFB = 628 cm²
Area of square, OEFG = Side² = 20² = 400 cm²
Area of shaded region = Area of quadrant ,OTFB - Area of square,OEFG
= 628 - 400
= 228 cm²
Area of shaded region = 228 cm²
Hence,the area of shaded region is 228 cm².
HOPE THIS ANSWER WILL HELP YOU….
Here are more questions of the same chapter :
In the following figure, OABC is a square of side 7 cm. If OAPC is a quadrant of a circle with centre O, then find the area of the shaded region. (Use )
https://brainly.in/question/9487448
In the following figure a square OABC is inscribed in a quadrant OPBQ of a circle. If OA = 21 cm, find the area of the shaded region.
https://brainly.in/question/9484955
Answer:
228.5cm²
Step-by-step explanation: