Math, asked by srishti775053, 10 months ago

In the following figure, PQ is a chord of a circle with centre O and PT is a tangent.If ∠QPT = 60°. Find ∠PRQ​

Attachments:

Answers

Answered by Anonymous
3

\huge\mathbb{SOLUTION:-}

\mathsf{M \: \angle OPT \: 90°(Radius \: is \: perpendicular \: to \: the \: tangent)}

\mathsf{So, \: \angle OPQ = \angle OPT - \angle QPT}

\red{:\implies} \mathsf{90° - 60° = 30°}

\mathsf{M \: \angle POQ = 2 \: \angle QPT \: 2 \times 60° = 120°}

\mathsf{Reflex \: M \: \angle POQ = 360° - 120° = 240°}

\mathsf{M \: \angle PRQ =  \frac{1}{2} \:  Reflex \: \angle POQ}

\red{:\implies} \frac{1}{2}  \times 240°

\red{:\implies} \mathsf{120°}

\therefore \mathsf{PRQ = 120°}

Attachments:
Similar questions