In the following figure PQRS is a square and SRT is an equilateral triangle. Prove that
(i)Triangle PQTis an isosceles
(ii) Find Angle TPS
Answers
Step-by-step explanation:
Because PQRS is a square
∠PSR=∠QRS=90
∘
Now In △SRT
∠TSR=∠TRS=60
∘
∠PSR+∠TSR=∠QRS+∠TRS
⟹∠TSP=∠TRQ
Now in △TSP and △TRQ
TS=TR
∠TSP=∠TRQ
PS=QR
Therefore , △TSP≡△TRQ
So PT=QT
(ii) Now in △TQR,
TR=QR(RQ=SR=TR)
∠TQR=∠QTR
And ∠TQR+∠QTR+∠TRQ=180
⟹∠TQR+∠QTR+∠TRS+∠SRQ=180
⟹2(∠TQR)+60+90=180 (∠TQR=∠QTR)
2(∠TQR)=30
⟹∠TQR=15
∘
please mark me Brenest answer
Answer:∠PSR=∠QRS=90
∘
Now In △SRT
∠TSR=∠TRS=60
∘
∠PSR+∠TSR=∠QRS+∠TRS
⟹∠TSP=∠TRQ
Now in △TSP and △TRQ
TS=TR
∠TSP=∠TRQ
PS=QR
Therefore , △TSP≡△TRQ
So PT=QT
(ii) Now in △TQR,
TR=QR(RQ=SR=TR)
∠TQR=∠QTR
And ∠TQR+∠QTR+∠TRQ=180
⟹∠TQR+∠QTR+∠TRS+∠SRQ=180
⟹2(∠TQR)+60+90=180 (∠TQR=∠QTR)
2(∠TQR)=30
⟹∠TQR=15
∘
Step-by-step explanation:
if the answer was helpful/useful pls mark me as the brainliest