Math, asked by yashwanthyash29, 5 months ago

In the following figure, sides QP and RQ of triangle PQR are produced to points S and T respectively. If angle SPR=135° and angle PQT=110° , find angle PRQ​

Attachments:

Answers

Answered by adya45897
1

Answer:

65°

Step-by-step explanation:

first QR=180°-110°=70° (ACCORDING TO LINEAR PAIR)

NOW PQR+PRQ=SPR. ( ACCORDING TO EXTERIOR ANGLE PROPERTY)

SO. 70°+PRQ=135°

PRQ = 135°-70°=65°

Answered by Anonymous
4

GIVEN:-

\large\sf{\angle{SPR}=135°}

\large\sf{\angle{PQT} =110°}

TO FIND:-

\large\sf{\angle{PRQ}}

PROOF:-

\implies\large\sf{\angle{PQT}+\angle{SQR}=180°}

\implies\large\sf{110°+\angle{SQR}=180°}

\implies\large\sf{\angle{SQR}=180°-110°}

\implies\large\sf{\angle{SQR}=70°}

━━━━━━━━━━━━━━━

\implies\large\sf{\angle{SPR}+\angle{RPQ}=180°}

\implies\large\sf{135°+\angle{RPQ}=180°}

\implies\large\sf{\angle{RPQ}=180°-135°}

\implies\large\sf{\angle{RPQ}=45°}

━━━━━━━━━━━━━━━

\implies\large\sf{\angle{PRQ}+\angle{SQR}+\angle{RPQ}=180°}

\implies\large\sf{\angle{PRQ}+70°+45°=180°}

\implies\large\sf{\angle{PRQ}+115°=180°}

\implies\large\sf{\angle{PRQ}=180°-115°}

\implies\large\sf{\angle{PRQ}=65°}

Similar questions