Math, asked by sheelaswathi17, 1 month ago

In the given circle with centre ‘O’ ACB, AE and BD are the tangents. If AB=12cm, AE=3cm the length of BD is A. 6 cm B. 3 cm C. 8 cm D. 9 cm​

Answers

Answered by akshay1may2007
2

Answer:

20  cm.

solution

Step-by-step explanation:

OP=OQ=5cm

OT=13cm

OP and PT are radius and tangent respectively at contact point P.

∴∠OPT=90  

 

So, by pythagoras theorem, in right angled ΔOPT,

PT  

2

=OT  

2

−OP  

2

=13  

2

−5  

2

=169−25=144

⇒PT=12cm

AP and AE are two tangents from an external point A to a circle.

∴AP=AE

AEB is tangent and OE is radius at contact point E.

So, AB⊥OT ___(i)

So, by Pythagoras theorem, in right angled. ΔAET.

AE  

2

=AT  

2

−ET  

2

 

⇒AE  

2

=(PT−PA)  

2

−[TO−OE]  

2

 

=(12−AE)  

2

−(13−5)  

2

 

⇒AE  

2

=(12)  

2

+(AE)  

2

−2(12)(AE)−(8)  

2

 

⇒AE  

2

−AE  

2

+24AE=144−64

⇒24AE=80

⇒AE=  

24

80

​  

cm

⇒AE=  

3

10

​  

cm

REF. IMAGE

In ΔTPO and ΔTQO,

OT=OT [common]

PT=QT [Tangents from T]

OP=OQ [Radii of same circle]

∴ΔTPO≅ΔTQO [By SSS criterion of congruence]

⇒∠1=∠2 ___(ii) [CPCT]

In ΔETA and ΔETB,

ET=ET [Common]

∠TEA=∠TEB=90  

 [From (i)]

∠1=∠2 [CPCT] [From (ii)]

∴ΔETA≅ΔETB [By ASA criterion of congruence]

⇒AE=BE [CPCT]

⇒AB=2AE=2×  

3

10

​  

 

⇒AB=  

3

20

​  

cm

Hence, the required length is  

3

20

​  

cm.

solutionOP=OQ=5cm

OT=13cm

OP and PT are radius and tangent respectively at contact point P.

∴∠OPT=90  

 

So, by pythagoras theorem, in right angled ΔOPT,

PT  

2

=OT  

2

−OP  

2

=13  

2

−5  

2

=169−25=144

⇒PT=12cm

AP and AE are two tangents from an external point A to a circle.

∴AP=AE

AEB is tangent and OE is radius at contact point E.

So, AB⊥OT ___(i)

So, by Pythagoras theorem, in right angled. ΔAET.

AE  

2

=AT  

2

−ET  

2

 

⇒AE  

2

=(PT−PA)  

2

−[TO−OE]  

2

 

=(12−AE)  

2

−(13−5)  

2

 

⇒AE  

2

=(12)  

2

+(AE)  

2

−2(12)(AE)−(8)  

2

 

⇒AE  

2

−AE  

2

+24AE=144−64

⇒24AE=80

⇒AE=  

24

80

​  

cm

⇒AE=  

3

10

​  

cm

REF. IMAGE

In ΔTPO and ΔTQO,

OT=OT [common]

PT=QT [Tangents from T]

OP=OQ [Radii of same circle]

∴ΔTPO≅ΔTQO [By SSS criterion of congruence]

⇒∠1=∠2 ___(ii) [CPCT]

In ΔETA and ΔETB,

ET=ET [Common]

∠TEA=∠TEB=90  

 [From (i)]

∠1=∠2 [CPCT] [From (ii)]

∴ΔETA≅ΔETB [By ASA criterion of congruence]

⇒AE=BE [CPCT]

⇒AB=2AE=2×  

3

10

​  

 

⇒AB=  

3

20

​  

cm

Hence, the required length is  

3

20

​  

cm.

solution

Answered by sharada99
2

Answer:

Answer is 9 cm

The tangents drawn from external point to a circle are equal.

so AE=AC= 3 cm

so, BC=AB -AC

= 12- 3

9 cm

Here,the tangents BC and BD are tangents from common point B.

so, BC = BD= 9 cm

Step-by-step explanation:

hope it helps you.

please mark me as brainliest friend.

Similar questions