Math, asked by Vardan1111, 1 year ago

In the given Fig. 2,O is the centre of the circle with AC =24 cm,AB =7 cm and angle BOD =90°. Find the area of the shaded region [Take π = 3.14]

Attachments:

Answers

Answered by nitkumkumar
38

Answer:

Area of shaded region  =  284  cm²    (approx)

Step-by-step explanation:

In the figure, area of shaded region is as follows

= area of semicircle ABC + area of quadrant BOD - area triangle ABC

As, BC is the diameter so, angle BAD =  90 degree

=> triangle ABC is right angled at A .

According to Pythagorus Theorem -

BC² = AB² + AC²

=>  BC²  = 7² + 24²

              = 49 + 576

                =   625

=>  BC  =  25  cm

Thus, area of semicircle ABC  =  (pi * r * r)/2

                                             =  (3.14 * 25/2 * 25/2)/2

                                          =   245.3125  cm²

area of quadrant BOD  =  (pi * r * r)/4

                                     =  (3.14 * 25/2 * 25/2)/4

                                    =   122.656  cm²

area of right triangle ABC =  1/2 * base * height

                                     =  1/2 * 7 * 24

                                    =   84   cm²

Thus, area of shaded region =  245.3125 + 122.656 -  84

                                             =   283.9685  cm²

                                            =  284  cm²    (approx)

               

Answered by amitnrw
23

Answer:

283.97 cm²

Step-by-step explanation:

In the given Fig. 2,O is the centre of the circle with AC =24 cm,AB =7 cm and angle BOD =90°. Find the area of the shaded region [Take π = 3.14]

BC is diameter as it is passing through center so

∠CAB = 90°

now using Pythagoras theorem

BC² = AC² + AB²

=> BC² = 24² + 7²

=> BC² = 576 + 49

=> BC² = 625

=> BC = 25 cm

BC = 25 cm = Diameter

so Radius = 25/2 = 12.5cm

Area of shaded region = Area of semi circle - Area of Triangle  + Area of region with 90 deg angle

= ((1/2) * 3.14 * 12.5²)  - ((1/2) * 24 * 7 )+ ((90/360)*3.14*12.5²)

= 245.31 - 84 + 122.66

= 283.97 cm²

Similar questions