In the given Fig. 8.42, ZACB = 90°, ZBDC = 90° CD = 4 cm, BD= 3 cm, AC=12 cm. cos 4-sin A is equal to 5 12 (b 13 T (C) (0 12
Answers
Answer:
BDC=90∘
∠ABC=90∘
Let ∠BCD=x∘
Using triangle sum property in △BDC, ∠DBC=90−x∘
Also ∠ABD=x∘
Using triangle sum property in △ADB, ∠BAD=90−x∘
Now considering △BDC and △ADB
BDC=∠BDA [∵∠BDC=∠BDA=90∘]
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA△BDC∼△ADB
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA△BDC∼△ADBHence CDBD=BDAD
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA△BDC∼△ADBHence CDBD=BDADCD8=84
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA△BDC∼△ADBHence CDBD=BDADCD8=84CD=16
BDC=∠BDA [∵∠BDC=∠BDA=90∘]∠DBC=∠DAB [∵∠DBC=∠DAB=(90−x)∘]So by AA△BDC∼△ADBHence CDBD=BDADCD8=84CD=16Hence CD=16cm
Step-by-step explanation:
PLEASE MARK AS BRANILST AND LIKE