Math, asked by StarTbia, 1 year ago

In the given fig. if AD ⊥ BC. Prove that AB² + CD² = BD² + AC².

Attachments:

Answers

Answered by Noah11
8
\textbf{Answer:}

In Fig. ABC is a triangle in which

AD⊥BC

Now we have 2 right-angled triangle.

 ∆ADB and ∆ ADC

In ∆ABD

AD²=AB²-BD² (Pythagoras theorem)

 ∆ACD=AD²-CD²

AD²=AD²

AB²-BD²=AD²-CD²

AB²+CD²=BD²+AD²

Hence proved.


\textbf{Hope it helps you!}
Answered by abhi569
8
By Pythagoras Theorem,



In ∆ ABD,
 \mathbf{AB^{2} = {AD}^{2}  + {DB}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(i)




In ∆ ABC,

 \mathbf{AC^{2}= AD^{2}+CD^{2}} \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: ... (ii)






Now,


 \mathbb{Subtract  \:  \: ( ii )  \:  \:  from  \:  \:  \: ( i ), }


AB² - AC² = AD² + BD² - AD² - CD²


=> AB² - AC² = BD² - CD²


=> AB² + CD² = BD² + AC²








 \textbf{ \:  \: Hence,  \:   Proved}
.

Noah11: great answer sir!
Noah11: :)
abhi569: :+)
abhi569: :-)
Similar questions