Math, asked by pran6, 1 year ago

In the given fig triangle PQR is an equilateral triangle of side 8 cm and P Q R are center of circular arcs each of the radius 4 cm find the area of shaded region

Answers

Answered by ritikapal0308
4

Answer:where is figure


Answered by rahul123437
2

The area of shaded region is 2.59 cm²

To find : Area of shaded region.

Given :

PQR is an equilateral triangle.

It has a side of 8 cm.

PQR are center of circular arcs each of the radius 4 cm.

Formula :

Area of shaded region = Area of ΔPQR - 3 ( Area of sector )          

Finding area of ΔPQR :

Radius (r_1) = 8 cm            

Area of ΔPQR = \frac{\sqrt{3} }{4} \times\((r_1)^2

                       = \frac{\sqrt{3} }{4}\times8\times8

                       = 27.71 cm²

Finding area of sector :

Radius (r_2) = 4 cm.

\theta = 60°  

Area of sector = \frac{\theta}{360^{\circ}} \times \pi r^{2}

3 Area of sector = 3(\frac{\theta}{360^{\circ}} \times \pi \times\((r_2)^{2})

                           = 3(\frac{60^{\circ}}{360^{\circ}} \times\(3.14\times 4\times4)

                           = 3(8.373)

                           = 25.12 cm²

Area of shaded region = 27.71 - 25.12

                                      = 2.59 cm².

Therefore, the area of shaded region is 2.59 cm².

To learn more...

1. brainly.in/question/6941721

2. brainly.in/question/9613725                          

Attachments:
Similar questions
Math, 8 months ago