Math, asked by parvnoor26, 1 year ago

in the given figure 2b-a=65 degree and angle boc = 90 degree find the measure of angle AOB , AOD and COD

Attachments:

Answers

Answered by sonuvuce
37

Answer:

∠AOB = 50°

∠AOD = 70°

∠COD = 150°

Step-by-step explanation:

Sum of all the angles around point O will be 360°

∴ ∠AOB + ∠BOC + ∠COD + ∠DOA = 360°

⇒ a + 90° + (2a + b + 15°) + 2b = 360°

⇒ 3a + 3b = 360° - 105°

⇒ a + b = 85°        ....................... (1)

Also given

2a - b = 65°         ......................... (2)

Adding eq (1) and eq (2)

3a = 150°  

⇒ a = 50°  

Putting the value of a in eq (1)

we get b = 35°  

Therefore

∠AOB = a = 50°

∠AOD = 2b = 2 × 35° = 70°

∠COD = 2a + b + 15° = 2 × 50° + 35° + 15° = 150°

Answered by DamSnackBar01
7

Answer:

∠AOB = 50°

∠AOD = 70°

∠COD = 150°

Step-by-step explanation:

Sum of all the angles around point O will be 360°

∴ ∠AOB + ∠BOC + ∠COD + ∠DOA = 360°

⇒ a + 90° + (2a + b + 15°) + 2b = 360°

⇒ 3a + 3b = 360° - 105°

⇒ a + b = 85°        ....................... (1)

Also given

2a - b = 65°         ......................... (2)

Adding eq (1) and eq (2)

3a = 150°  

⇒ a = 50°  

Putting the value of a in eq (1)

we get b = 35°  

Therefore

∠AOB = a = 50°

∠AOD = 2b = 2 × 35° = 70°

∠COD = 2a + b + 15° = 2 × 50° + 35° + 15° = 150°

Similar questions