In the given figure, 2X = 72°, ZXZY = 46°. If YO and ZO are bisectors of ZXYZ and ZXZY respectively of AXYZ, find LOYZ and LYOZ. what will be the answer?
Answers
Answer:
Solution-
Given that,
In ∆ XYZ
∠YXZ = 72°
∠XZY = 46°
We know, Sum of all interior angles of a triangle is supplementary.
⇛ ∠XYZ + ∠XZY + ∠YXZ = 180°
∠XYZ +46° + 72° = 180°
∠XYZ + 118° = 180°
∠XYZ = 180° - 118°
⇛ ∠XYZ = 62°
Now, further given that
OY bisects ∠XYZ
⇛∠XYZ = 2∠OYZ
⇛62° = 2∠OYZ
⇛ ∠OYZ = 31°
Also, given that
OZ bisects ∠XZY
⇛∠XZY = 2∠OZY
⇛ 46° = 2∠OZY
⇛∠OZY = 23°
Now, In ∆ OYZ
We know, Sum of all interior angles of a triangle is supplementary.
∠YOZ + ∠OYZ + ∠OZY = 180°
On substituting the values, we get
∠YOZ + 31° + 23° = 180°
∠YOZ + 54° = 180°
∠YOZ = 180° - 54°
⇛∠YOZ = 126°.
Hence,
⇛{ ∠XYZ =62°
{∠ YOZ = 126
Please mark me brainliest
As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,
∠X + ∠XYZ + ∠XZY = 180º
62º + 54º + ∠XZY = 180º
∠XZY = 180º − 116º
∠XZY = 64º
∠OZY = 32º (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ == 27º
Using angle sum property for ΔOYZ, we obtain
∠OYZ + ∠YOZ + ∠OZY = 180º
27º + ∠YOZ + 32º = 180º
∠YOZ = 180º − 59º
∠YOZ = 121º