in the given figure ab=9cm bc=12cm and ac is15 cm bp is perpendicular to ac find measure of angle abc prove that triangla apb is similarly to triangle abc
Answers
in Rt∆ when BP is Perpendicular To AC ,
we have ,
\large\red{\boxed{\sf BP²=AP*PC}}
-------------(1)
\Large\bold{\boxed{\boxed{ < /strong > < strong > AB < /strong > < strong > \ < /strong > < strong > : < /strong > < strong > ²\:=\:AP\:×\: < /strong > < strong > A < /strong > < strong > C}}}
-------------(2)
using (2) we get,
9² = AP*15
AP = 81/15(Ans)
PC = 15-(81/15) = 144/15
putting this value in (1) we get,
BP² = (81/15)*(144/15)
BP² = (81*144)/(15)²
BP = 9*12/15 = (36/5) (Ans)
Answer:
in Rt∆ when BP is Perpendicular To AC ,
we have ,
\large\red{\boxed{\sf BP²=AP*PC}}
BP²=AP∗PC
-------------(1)
\Large\bold{\boxed{\boxed{ < /strong > < strong > AB < /strong > < strong > \ < /strong > < strong > : < /strong > < strong > ²\:=\:AP\:×\: < /strong > < strong > A < /strong > < strong > C}}}
</strong><strong>AB</strong><strong> </strong><strong>:</strong><strong>²=AP×</strong><strong>A</strong><strong>C
-------------(2)
using (2) we get,
9² = AP*15
AP = 81/15 (Ans)
PC = 15-(81/15) = 144/15
putting this value in (1) we get,
BP² = (81/15)*(144/15)
BP² = (81*144)/(15)²
BP = 9*12/15 = (36/5) (Ans)
Step-by-step explanation:
hope it will help you
mark me as brainlliest