Math, asked by paswansamendra, 3 months ago

In the given figure AB and AC are opposite rays. find y=25l

Attachments:

Answers

Answered by siddhant11996
0

Step-by-step explanation:

please mark me as brainliest

Attachments:
Answered by itzwhitedevil
1

Answer:

\huge\fbox \red{A}\fbox \green{n}\fbox \purple{s}\fbox \orange{w}\fbox \red{e}\fbox \color{aqua}{r}

 \huge  \bold{ \mathtt{ \underline{ \underline{ \color{red}{given \ratio}}}}}

 \bold{ \angle \: cad = (5y + 21) \degree} \\   \bold{\angle \: bad = 2x \degree}

 \huge  \bold{ \mathtt{ \underline{ \underline{ \color{red}{to \: find \ratio}}}}}

 \bold{value \: of \: x} \\  \bold{y = 251}

 \huge  \bold{ \mathtt{ \underline{ \underline{ \color{red}{solution \ratio}}}}}

 \bold{ \angle \: cad +  \angle \: bad = 180 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (leniar \: pair)} \\  \bold{i.e. \: (5y + 21) + 2x = 180 \degree}

 \bold{\Rightarrow \: 5y + 21 + 2x = 180 \degree} \\  \bold{\Rightarrow \: 5 \times 251 + 2x = 180 - 21 = 159  \degree} \\  \bold{\Rightarrow \: x =  \frac{159}{251 \times 5 \times 2}} \\  \bold{\Rightarrow \: x =  \frac{159}{251 \times 10}  = \frac{159}{2510}  } \\  \bold{\Rightarrow \: 0.0633466135458}  \\ \bold{0.06(approx)}

Similar questions