Math, asked by sgcal7, 2 months ago

In the given figure, AB and AC are tangents to the
circle with centre o such that BAC = 40°. Then
calculate BOC

Answers

Answered by Anonymous
1

Answer:

140°

Step-by-step explanation:

BOC+ BAC+90+90=360

BOC=180-40

=140°

Answered by tanvichhabra29
1

Tangent is perpendicular to radius at point of contact.

So, ∠ABO=∠ACO=90

In a quadrilateral, the sum of the angles is 360

∠BAC+∠BOC+∠ABO+∠ACO=360

∴∠BAC+∠BOC=180

∠BOC=180−40

∠BOC=140

Hope this helps.....

Attachments:
Similar questions