Math, asked by bhavyasarawgi503, 1 year ago

In the given figure, AB and AC are tangents to the circle with center O such that ∠BAC = 40^o . Then , ∠BOC = ?

Answers

Answered by anushkaacharjee2003
24

OB and OC are the two radii of the circle .

AB and AC are the two tangents of the circle.

We know that radius of the circle is perpendicular to the tangent at the point of contact.

∴ OB ⊥ AB and OC ⊥ AC    and ∠ BAC = 40°

∴ IN QUADRILATERAL ABOC ,

∠ BAC + ∠ ACO + ∠ ABO + ∠ BOC = 360° [ angle sum property of a  

                                                                          quadrilateral. ]

⇒ 40° + 90° + 90° + ∠BOC = 360° [ ∵ OB⊥AB and OC ⊥ AC ]

⇒ 220° + ∠BOC = 360°

⇒ ∠BOC = 140°

∴ ∠BOC = 140°

                                                                                                                                                           

Answered by shabhana
30

please mark me as brainlest

Attachments:

babu11110: ur class
shabhana: what??
shabhana: i am in shooting
babu11110: in which class u r
shabhana: after wards i chat with u
babu11110: ohk
shabhana: i am an actress
shabhana: my age is 30
babu11110: ohk
babu11110: hi
Similar questions