In the given figure ab=bc and ac=cd.prove that BAD:ADB=3:1
Answers
Answered by
1
Answer:
In the diagram, we have two Isosceles triangles. For ΔABC, AB= BC and for ΔACD, AC= CD
In isosceles triangle, the two angles opposite to the equal sides are also equal. So, for ΔABC, ∠BAC = ∠ACB and for ΔACD, ∠CAD = ∠ADC
As ∠ACB is outside angle of ΔACD ,
so ∠ACB = ∠CAD + ∠ADC
⇒ ∠ACB = 2× ∠ADC (As, ∠CAD = ∠ADC )
⇒ ∠BAC = 2× ∠ADC (As, ∠BAC = ∠ACB )
Now, according to the diagram,
∠BAD - ∠CAD = ∠BAC
⇒ ∠BAD - ∠ADC = 2× ∠ADC [As, ∠CAD = ∠ADC and ∠BAC = 2× ∠ADC]
⇒ ∠BAD = 3× ∠ADC
⇒ ∠BAD = 3× ∠ADB [As, ∠ADC and ∠ADB are same angles]
⇒ \frac{\angle BAD}{\angle ADB} = \frac{3}{1} \\ \\ So, \angle BAD: \angle ADB= 3:1 (Proved)
Answered by
0
Answer:
o bhai......
where is figure?????
upload question with figure.......
Similar questions