In the given figure, AB || CD, ∠ABE = 120°, ∠ECD = 100° and ∠BEC = x°. Find the value of x
Answers
★In the given figure, AB || CD, ∠ABE = 120°, ∠ECD = 100° and ∠BEC = x°. Find the value of x
★In the given figure, AB || CD, ∠ABE = 120°, ∠ECD = 100°
★The value of x
★Through E, draw FEG || AB || CD.
Now, FE || AB And BE is the transversal.
∴ ∠BEF + ∠ABE = 180°
==> ∠BEF + 120° = 180° [co-interior angle]
==> ∠BEF = (180° – 120°)
==> ∠BEF = 60°
Again, CD || EG and CE is the transversal.
∴ ∠CEG + ∠ECD = 180° [co-interior angle]
==> ∠CEG + 100° = 180°
==> ∠CEG = (180° – 100°)
==> ∠CEG = 80°
Now, FEG is a straight line.
∴ ∠BEF + ∠BEC + ∠CEG = 180°
==> 60° + x° + 80° = 180°
==> x + 140° = 180°
==> x = (180° – 140°)
==> x = 40°
Hence, the value of x is 40°
━─━─━─━─━──━─━─━─━─━─━─━━─━─━─━
Given:
AB || CD
∠ABE = 120°
∠ECD = 100°
∠BEC = x°
Find: value of x
Through E, draw FEG || AB || CD. Now, FE ∣∣ A B FE∣∣AB and BE is the transversal.
- ∠ B E F + ∠ A B E = 180° [co-interior ∠ s ∠s]
- ∠ B E F + 120° = 180°
- ∠BEF+120°=180°
- ∠ B E F = ( 180° − 120° ) = 60°
∠BEF=(180°-120°)=60°. Again C D ∣ ∣ E G CD∣∣EG and CE is the transversal.
- ∠ C E G + ∠ E C D = 180°
- ∠CEG+∠ECD=180° [co-interior ∠ s ∠s]
- ∠ C E G + 100° = 180°
- ∠CEG+100∘=180°
- ∠ C E G = ( 180° − 100° ) = 80°
Now, FEG is a straight line.
- ∠ B E F + ∠ B E C + ∠ C E G = 180°
- ∠BEF+∠BEC+∠CEG=180°
- 60° + x° + 80° = 180°
- x + 140° = 180°
- x = 180° - 140°
- x = 40°
Hence the value of x is 40°