In the given figure , AB || CD || EF given AB = 7.5 cm , DC =y cm , EF = 4.5 cm , BC = x cm . Calculate the values of x and y.
Answers
∆CDC ∼ ∆ABE
➼
➼
➼
➼
➼
Similarly ∆BDC ∼ ∆BEF
➼
➼
➼
➼
➼
➼
➼
➼
➼
➼
➼
➼
Step 1: Look at the given figure and note down the given values
NOTE: AB || CD || EF
AB = 7.5 cm, CF = 3 cm, EF = 4.5 cm
DC = y cm, and BC = x cm
Step 2: Identify the similar triangles in the given figure.
EXPLANATION:1) ∠ACB = ∠ECF (Vertical angles)
∠BAC = ∠FEC (Alternate angles)
∠ABC = ∠CFE (Alternate angles)
So, From AAA theorem Consider ΔACB and ΔCEF are similar,
2) From BPT theorem, consider Δ BCD and ΔBFE are similar triangles.
Step 3: Use the similar triangle properties
NOTE: the ratios of the lengths of similar triangles corresponding
sides are equal.
ΔACB and ΔCEF are similar,
So, \frac{AB}{EF} = \frac{x}{3}
EF
AB
=
3
x
Δ BCD and ΔBFE are similar
So, \frac{BC}{DC} = \frac{BF}{FE}
DC
BC
=
FE
BF
Step 4: Plugging the known values and simplify for unknown
EXAMPLE: We Known that AB = 7.5 cm, EF = 4.5 cm
\frac{7.5}{4.5} = \frac{x}{3}
4.5
7.5
=
3
x
\frac{7.5}{4.5} * 3 = x
4.5
7.5
∗3=x
x = 5
Step 5: Use this x value to find the y value
EXAMPLE: \frac{BC}{DC} = \frac{BF}{FE}
DC
BC
=
FE
BF
\frac{x}{y} = \frac{x+3}{4.5}
y
x
=
4.5
x+3
Substitute the x value
\frac{5}{y} = \frac{5+3}{4.5}
y
5
=
4.5
5+3
y = \frac{4.5}{8} *5y=
8
4.5
∗5
y = \frac{45}{16}y=
16
45