Math, asked by patkarirekha, 11 months ago

In the given figure , AB || CD || EF given AB = 7.5 cm , DC =y cm , EF = 4.5 cm , BC = x cm . Calculate the values of x and y.?​

Attachments:

Answers

Answered by Anonymous
37

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

According \:to

Thales\: theorem

∆CDC ∼ ∆ABE

 \frac{cd}{ab}  =  \frac{de}{be}

 \frac{y}{7.5}  =  \frac{de}{be}

1 -  \frac{y}{7.5}  = 1 -  \frac{de}{be}

 \frac{7.5 - y}{7.5}  =  \frac{be - de}{be}

 \frac{7.5 - y}{7.5}  =  \frac{bd}{be} ...... \: (1)

Similarly ∆BDC ∼ ∆BEF

 \frac{bd}{be}  =  \frac{cd}{ef}  =  \frac{bc}{bc + cf}

 \frac{bd}{be}  =  \frac{y}{4.5}  =  \frac{x}{x + 3}  \: ....... \: (2)

From ( 1 ) and ( 2 )

 \frac{7.5 - y}{7.5}  =  \frac{y}{4.5}

7.5y=(7.5)(4.5)-4.5y

12y=(7.5)(4.5)=33.75

y =  \frac{33.75}{12}  = 2.8125

From ( 2 )

 \frac{y}{4.5}  =  \frac{x}{x + 3}

 \frac{2.8}{4.5}  =  \frac{x}{x + 3}

 4.5 x = (2.8) x + 8.4

  4.5 x - 2.8 x = 8.4

1.7 x = 8.4

x=\frac{8.4}{1.7}

\huge\pink{5\:(appr)}

Answered by cuberricky
0

Answer:

Step-by-step explanation:

In ΔBEF, from basic proportionality theorem.  

BD/DF = BC/CE

BD/DF = x/3

or BD= x and DF= 3

In ΔFBA  

FD/CD = FB/AB

FD/CD= FD+DB/AB

3/y = x +3/7.5

In ΔBEF

BC/CD= BE/EF

BC/CD= BC=CE/EF

x/y = x+3/4.5

y= 4.5x/ x+3

By subsituting values

3/4.5x/x+3 = x+3/7.5

3x+9/ 4.5x = x+3/7.5

22.5x + 67.5= 4.5x² + 13.5x

4.5x² + 13.5x - 22.5x - 67.5

4.5x² - 9x - 67.5=0

x² -2x -15=0

By factorizing

x² -5x +3x -15=0

(x-5) (x+3)=0

x= 5 and -3

triangle can not be negative so,  

y= 4.5 x 5/ 5+3

y=2.8125

---------------------------------------MARK ME AS BRAINY------------------------------

Similar questions