Math, asked by samikshakc2612, 2 months ago

in the given figure , AB CD . if angle BAC = (3x + 15)° and angle ACD = (2x + 45)° , find the value of x , also , find the measures of angle BAC and angle ACD​

Attachments:

Answers

Answered by kamalhajare543
17

Answer:

 \red{ \boxed{ \sf\red{Given:-}}}

  • ACD = (2x + 45)°
  • BAC = (3x + 15)°

 \boxed{  \red{ \sf \: To  \: Find : - }}

  • measures of angle BAC and angle ACD

 \pink{ \sf \: Solution:-}

 \sf \: 3x + 15 = 2x + 45

  \sf \: 3x - 2x = 45 - 15

 \pink{ \sf \frak  x = 35 {}^{0} }

 \sf \: BAC= 3x+15

 \sf \: 3(30) + 15

 \red{ \sf \:  = 105 {}^{0} }

 \sf \: ACD=2x+45

 \sf \: 2(30) + 45

 \red{ \sf \:  \frak{105 {}^{0} }}

BAC=105°

ACD= 105°

Hence, This is Answer

Answered by prajapatipratham1211
5

3x+15+2x+45=180

5x+60=180

5x=180-60

5x=120

x=120/5x=24

/_ ACD=(2X+45)

=2(24)+45

48+45

=93

/_ BAC= (3X+15)

=3(24)+15

=72+15

=87

X=24

/_ACD=93

/_BAC=87

Similar questions