Math, asked by sanjayrchn, 1 month ago

In the given figure, AB || DC, if
x =4/3y,
y=3/8z,
find angle
(A) 10°
(C) 20°
(B) 15°
(D) 30°

Attachments:

Answers

Answered by ankitchoudhary171108
0

Answer:

AB∥DC; x=

3

4

y and y=

8

3

z

AB∥DC,

⇒ ∠ABD=∠BDC [ Alternate angles ]

∴ ∠ABD=∠BDC=x

In △BDC,

x+y+z=180

o

3

4

y+

8

3

z+z=180

o

First we will solve the

3

4

y.

Since, y=

8

3

z

3

4

×

8

3

z

24

12

z

2

1

z

Now,

2

1

z+

8

3

z+z=180

o

8

4z+3z+8z

=180

o

.

8

15z

=180

o

.

⇒ 15z=180

o

×8

⇒ z=

15

1440

⇒ z=96

o

.

Now, y=

8

3

z

⇒ y=

8

3×96

o

⇒ y=

8

288

⇒ y=36

o

.

Now, x=

3

4

y

⇒ x=

3

4×36

o

⇒ x=

3

144

⇒ x=48

o

.

∴ x=48

o

,y=36

o

and z=96

o

.

please mark me as brainlist

Answered by Itzanjaliii
2

Answer:

AB∥DC; x=34y and y=83z

AB∥DC,

⇒  ∠ABD=∠BDC               [ Alternate angles ]

∴  ∠ABD=∠BDC=x  

In △BDC,

x+y+z=180o

⇒  34y+83z+z=180o

First we will solve the 34y.

Since, y=83z

∴  34×83z

⇒  2412z

⇒  21z

Now, 21z+83z+z=180o

⇒  84

Similar questions