Math, asked by csaanchi, 18 days ago

in the given figure, AB is a tangent to the circle in a point P. if angle=150DEEGREE then find angle OQP​

Attachments:

Answers

Answered by manojkumar27173
0

Answer:

OP≅OQ(Radii of the same circle)

∴ΔPOQ is an isosceles triangle

∴∠OPQ≅∠OQP ……………(1)

Let ∠OPQ⋅∠OQP=x ………………(2)

In ΔOPQ,

∠OPQ+∠OQP+∠POQ=180

o

x+x+70

o

=180

o

2x=180

o

−70

o

2x=110

o

x=110

o

/2

∴x=55

o

PT is the tangent to the circle at P.

∴OP⊥PT

(tangent is perpendicular to radius)

∴∠OPT=90

o

∠OPT=∠OPQ+∠TPQ

90

o

=55

o

+∠TPQ

⇒∠TPQ=90

o

−55

o

∠TPQ=35

o

.

Similar questions