Math, asked by akibaftabsifmnil, 10 months ago

In the given figure, AB is the diameter of the circle with center O. If ∠BOD = 15° & ∠EOA = 85°, then find the value of ∠ECA.​

Attachments:

Answers

Answered by Anonymous
7

Answer:

∠EOA = 85°,     ∠BOD = 15°

∠EOD = 180° - (85° + 15°) = 80°

In Δ OED, OE = OD (radii)

∠OED = ∠ODE = 50°

In Δ OEC, ∠EOC = 80°+15°

= 95°

⇒ ∠ECA = 180°- (95 + 50°) = 35°

Step-by-step explanation:

Answered by bhuvna789456
0

Answer:

ECA=35°

Step-by-step explanation:

We have

BOD=15° and ∠EOA=85°

EO=OD  (Radius of circle)

Hence,

OED=ODE=x

ADE+EOD+BOD=180° (Linear pair sum)

85°+EOD+15°=180°

EOD=180°-100

EOD=80°

In Δ EOD,

x+EOD+15°=180°

2x+80°=180°

2x=180°-80°

x=\frac{100}{2}

x=50°, Hence ∠OEC=50

In Δ EOC,

EOC+ECA+OEC=180°

(EOD+BOD)+ECA+50°=180°

80°+15°+ECA+50°=180°

ECA=180°-145°

ECA=35°

Similar questions