Math, asked by ArslanxD8054, 8 months ago

In the given figure ab parallel cd find the value of x​

Answers

Answered by Anonymous
24

Answer:

AB || CD [ given ]

AB || CD [ given ]<A = <C [ corresponding angle ]

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,sum of all angles of triangle = 180°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,sum of all angles of triangle = 180°<C' + <F + <E = 180°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,sum of all angles of triangle = 180°<C' + <F + <E = 180°105° + 30° + x = 180°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,sum of all angles of triangle = 180°<C' + <F + <E = 180°105° + 30° + x = 180°x = 180° - 135°

AB || CD [ given ]<A = <C [ corresponding angle ]75° = 75°<C + <C' = 180° [ straight angle or linear pair ]75° + <C' = 180°<C' = 180° - 75°= 105°Now,sum of all angles of triangle = 180°<C' + <F + <E = 180°105° + 30° + x = 180°x = 180° - 135°= 45°

Similar questions