Math, asked by Abhishek586246, 4 months ago

In the given figure , ∠ ABC = 130 ° and chord BC = chord BE. Find ∠CBE.​

Attachments:

Answers

Answered by Anonymous
134

  \large\bf \red{Answer}

 \small \tt{Let \:  us \:  consider \:  , the \:  points  \: A , B , C \:  and \: D \:  from } \\  \small \tt{ Cyclic  \: quadrilateral .}

 \small  \tt{ \therefore  \angle \: AD  + \angle \: OBC = 180 \degree[opposite \: angle \: of \: cyclic \: quadrilateral ].}

 \small \tt{{ \implies \: 130 \degree +  \angle \:OBC = 180 \degree }}

 \small \tt{{ \implies  \angle \: OBC = 180 \degree  -  130 \degree}}

 \small \tt{{ \implies  \angle \: OBC  = 50 \degree}}

 \tt \small{In  \:  \triangle \: BOC  \: and \:   \triangle \: BOE,}

  \tt \small \: BC = BE \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [Given]

 \tt \small{OC = OE} \:  \:  \:  \:  \:  \:  \:  \:  \: [Radius  \: of  \: a  \: same  \: circle]

 \tt \small{and \:  \: OB= OB  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  [Common]} \\\tt \small{\therefore\triangle \: BOC=   \triangle \: BOE  \:  \:  \: [By  \: SSS  \: congruency] }

  \tt \small{ \implies\angle \: OBC= \angle \: OBE  \:  \:  \:  \:  \:  \: [ By \:  C.P.C.T ]} \\

 \tt \small \: { Now, \angle \: CBE=  \angle \: CBO+ \angle \: EBO}

 \tt \small{ = 50 \degree + 50 \degree = 100 \degree}

━━━━━━━

Attachments:

Abhishek586246: Perfect
Anonymous: Thanku
Anonymous: ɢʀᴇᴀᴛ
Anonymous: Thanks Rohit
Itzselfishking: Perfect
Saduser12: Great
Anonymous: Sad kyu ho?
Similar questions