Math, asked by kavitadesh25, 8 months ago

In the given figure, △ABC  and Prove that . ar(△ABC) ar(△DBC) = AO DO △DBC​

Attachments:

Answers

Answered by Anonymous
14

Given :

➤ ∆ABC and ∆DBC are on the same base DC and AD intersect BC at O.

To Prove :

\sf{\dfrac{ar(\triangle ABC)}{ar(\triangle DBC)} = \dfrac{AO}{DO}}

Construction :

➤ Draw AL ⟂ BC and DM ⟂ BC.

Proof :

In ∆ALO and ∆DMO, we have

⪼ ∠ALO - ∠DMO - 90°

⪼ ∠ALO = ∠DMO [vertical opposite angle]

∴ ∆ALO ~ ∆DMO [bf AA similarity]

 \sf{: \implies  \dfrac{AL}{DM} =  \dfrac{AO}{DO}\:\:-----1}

\sf{: \implies \therefore \dfrac{ ar(\triangle ABC)}{ar(\triangle DBC)}}

\sf{: \implies \dfrac{ \dfrac{1}{2} \times BC \times AL }{ \dfrac{1}{2}  \times BC \times DM}  =  \dfrac{AL}{DM}  =  \dfrac{AO}{DO}   \:  \: \bigg[ using \: equation \: 1\bigg]}

\bf{Hence, \dfrac{ar(\triangle ABC)}{ar(\triangle DBC)} = \dfrac{AO}{DO}}

Hence, Proved !!

Attachments:
Similar questions